Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Compositional influence on the electrical performance of zinc indium tin oxide transparent thin-film transistors

Identifieur interne : 000174 ( Main/Repository ); précédent : 000173; suivant : 000175

Compositional influence on the electrical performance of zinc indium tin oxide transparent thin-film transistors

Auteurs : RBID : Pascal:14-0090023

Descripteurs français

English descriptors

Abstract

In this work, zinc indium tin oxide layers with different compositions are used as the active layer of thin film transistors. This multicomponent transparent conductive oxide is gaining great interest due to its reduced content of the scarce indium element. Experimental data indicate that the incorporation of zinc promotes the creation of oxygen vacancies, which results in a higher free carrier density. In thin-film transistors this effect leads to a higher off current and threshold voltage values. The field-effect mobility is also strongly degraded, probably due to coulomb scattering by ionized defects. A post deposition annealing in air reduces the density of oxygen vacancies and improves the field-effect mobility by orders of magnitude. Finally, the electrical characteristics of the fabricated thin-film transistors have been analyzed to estimate the density of states in the gap of the active layers. These measurements reveal a clear peak located at 0.3 eV from the conduction band edge that could be attributed to oxygen vacancies.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0090023

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Compositional influence on the electrical performance of zinc indium tin oxide transparent thin-film transistors</title>
<author>
<name sortKey="Marsal, A" uniqKey="Marsal A">A. Marsal</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dept Enginyeria Electronica and Center of Research in Nanoengineering, Universitat Politècnica Catalunya</s1>
<s2>Barcelona</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<wicri:noRegion>Barcelona</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Carreras, P" uniqKey="Carreras P">P. Carreras</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Dept Física Aplicada i Òptica, Universitat de Barcelona</s1>
<s2>Barcelona</s2>
<s3>ESP</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<wicri:noRegion>Barcelona</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Puigdollers, J" uniqKey="Puigdollers J">J. Puigdollers</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dept Enginyeria Electronica and Center of Research in Nanoengineering, Universitat Politècnica Catalunya</s1>
<s2>Barcelona</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<wicri:noRegion>Barcelona</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Voz, C" uniqKey="Voz C">C. Voz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dept Enginyeria Electronica and Center of Research in Nanoengineering, Universitat Politècnica Catalunya</s1>
<s2>Barcelona</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<wicri:noRegion>Barcelona</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Galindo, S" uniqKey="Galindo S">S. Galindo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dept Enginyeria Electronica and Center of Research in Nanoengineering, Universitat Politècnica Catalunya</s1>
<s2>Barcelona</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<wicri:noRegion>Barcelona</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Alcubilla, R" uniqKey="Alcubilla R">R. Alcubilla</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dept Enginyeria Electronica and Center of Research in Nanoengineering, Universitat Politècnica Catalunya</s1>
<s2>Barcelona</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<wicri:noRegion>Barcelona</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bertomeu, J" uniqKey="Bertomeu J">J. Bertomeu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Dept Física Aplicada i Òptica, Universitat de Barcelona</s1>
<s2>Barcelona</s2>
<s3>ESP</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<wicri:noRegion>Barcelona</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Antony, A" uniqKey="Antony A">A. Antony</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Dept Física Aplicada i Òptica, Universitat de Barcelona</s1>
<s2>Barcelona</s2>
<s3>ESP</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Espagne</country>
<wicri:noRegion>Barcelona</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Indian Institute of Technology</s1>
<s2>Bombay</s2>
<s3>IND</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Indian Institute of Technology</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0090023</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0090023 INIST</idno>
<idno type="RBID">Pascal:14-0090023</idno>
<idno type="wicri:Area/Main/Corpus">000057</idno>
<idno type="wicri:Area/Main/Repository">000174</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active layer</term>
<term>Annealing</term>
<term>Charge carrier density</term>
<term>Conduction band</term>
<term>Density of states</term>
<term>Electrical characteristic</term>
<term>Experimental data</term>
<term>Free carrier</term>
<term>Indium</term>
<term>Indium oxide</term>
<term>Lamellar structure</term>
<term>Oxide layer</term>
<term>Thin film</term>
<term>Thin film transistor</term>
<term>Threshold current</term>
<term>Tin oxide</term>
<term>Transparent thin film</term>
<term>Vacancy</term>
<term>Voltage current curve</term>
<term>Voltage threshold</term>
<term>Zinc</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Oxyde de zinc</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Couche mince transparente</term>
<term>Transistor couche mince</term>
<term>Couche oxyde</term>
<term>Couche active</term>
<term>Structure lamellaire</term>
<term>Indium</term>
<term>Donnée expérimentale</term>
<term>Zinc</term>
<term>Lacune</term>
<term>Porteur libre</term>
<term>Densité porteur charge</term>
<term>Caractéristique courant tension</term>
<term>Courant seuil</term>
<term>Seuil tension</term>
<term>Recuit</term>
<term>Caractéristique électrique</term>
<term>Densité état</term>
<term>Bande conduction</term>
<term>Couche mince</term>
<term>8530T</term>
<term>7361</term>
<term>8530P</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Zinc</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this work, zinc indium tin oxide layers with different compositions are used as the active layer of thin film transistors. This multicomponent transparent conductive oxide is gaining great interest due to its reduced content of the scarce indium element. Experimental data indicate that the incorporation of zinc promotes the creation of oxygen vacancies, which results in a higher free carrier density. In thin-film transistors this effect leads to a higher off current and threshold voltage values. The field-effect mobility is also strongly degraded, probably due to coulomb scattering by ionized defects. A post deposition annealing in air reduces the density of oxygen vacancies and improves the field-effect mobility by orders of magnitude. Finally, the electrical characteristics of the fabricated thin-film transistors have been analyzed to estimate the density of states in the gap of the active layers. These measurements reveal a clear peak located at 0.3 eV from the conduction band edge that could be attributed to oxygen vacancies.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>555</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Compositional influence on the electrical performance of zinc indium tin oxide transparent thin-film transistors</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>International Symposia on Transparent Conductive Materials, October 2012</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>MARSAL (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CARRERAS (P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PUIGDOLLERS (J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>VOZ (C.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>GALINDO (S.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ALCUBILLA (R.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BERTOMEU (J.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>ANTONY (A.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>KIRIAKIDIS (George)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Dept Enginyeria Electronica and Center of Research in Nanoengineering, Universitat Politècnica Catalunya</s1>
<s2>Barcelona</s2>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Dept Física Aplicada i Òptica, Universitat de Barcelona</s1>
<s2>Barcelona</s2>
<s3>ESP</s3>
<sZ>2 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Indian Institute of Technology</s1>
<s2>Bombay</s2>
<s3>IND</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Physics Dpt. Univ. of Crete, Voutes</s1>
<s2>Heraklion, Crete 70013</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA20>
<s1>107-111</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000505786660200</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0090023</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this work, zinc indium tin oxide layers with different compositions are used as the active layer of thin film transistors. This multicomponent transparent conductive oxide is gaining great interest due to its reduced content of the scarce indium element. Experimental data indicate that the incorporation of zinc promotes the creation of oxygen vacancies, which results in a higher free carrier density. In thin-film transistors this effect leads to a higher off current and threshold voltage values. The field-effect mobility is also strongly degraded, probably due to coulomb scattering by ionized defects. A post deposition annealing in air reduces the density of oxygen vacancies and improves the field-effect mobility by orders of magnitude. Finally, the electrical characteristics of the fabricated thin-film transistors have been analyzed to estimate the density of states in the gap of the active layers. These measurements reveal a clear peak located at 0.3 eV from the conduction band edge that could be attributed to oxygen vacancies.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F04</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C61</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Couche mince transparente</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Transparent thin film</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Película transparente</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Transistor couche mince</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Thin film transistor</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Transistor capa delgada</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Couche oxyde</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Oxide layer</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Capa óxido</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Couche active</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Active layer</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Capa activa</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Structure lamellaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Lamellar structure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Estructura lamelar</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Indio</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Donnée expérimentale</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Experimental data</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Dato experimental</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Lacune</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Vacancy</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Cavidad</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Porteur libre</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Free carrier</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Portador libre</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Densité porteur charge</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Charge carrier density</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Concentración portador carga</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Voltage current curve</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Característica corriente tensión</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Courant seuil</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Threshold current</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Seuil tension</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Voltage threshold</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Umbral tensión</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Recuit</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Annealing</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Recocido</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Caractéristique électrique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Electrical characteristic</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Característica eléctrica</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Densité état</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Density of states</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Densidad estado</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Bande conduction</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Conduction band</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Banda conducción</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>8530T</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>7361</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>8530P</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>118</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>TCM2012 International Symposia on Transparent Conductive Materials</s1>
<s3>Hersonissos, Crete GRC</s3>
<s4>2012-10-25</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000174 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000174 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0090023
   |texte=   Compositional influence on the electrical performance of zinc indium tin oxide transparent thin-film transistors
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024